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Dielectric Relaxation of Rollers & Belts 
is Critical to the Performance of 

Charging, Development & Transfer 

Characterizing the efficiency of dielectric relaxation  
in each device is the key to predict its performance! 
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Highlights 

• Efficient dielectric relaxation is critical to the 
performance of rollers and belts used in 
electrophotography. 

• Dielectric relaxation can be measured by the ECD 
(Electrostatic Charge Decay) method implemented in the 
QEA DRA-2000L system. 

• The ECD principle of the DRA-2000L simulates the 
physics of the charging, development and transfer 
processes, resulting in measurements that correlate 
very well with device performance. 

• Traditional resistance measurement method is neither 
consistent nor useful for predicting device performance. 
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Why Dielectric Relaxation is Important? 
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QEA Publications on  
Characterization of Semi-insulating 

Devices in Electrophotography 

www.qea.com 
 

Year Conference Subject 

1999 JHC ECD method for semi-insulators 

1999 NIP15 Modeling of electrostatic transfer 

2000 NIP16 Transfer media 

2001 NIP17 Corona charging current 

2002 ICIS Charge mobility measurement 

2004 NIP20 Transfer of color images 

2005  JHC Semi-insulating devices 

2005 NIP21 Roller charging of photoreceptor 

2006 ICIS Media non-uniformity issues 

2006 NIP22 Counter charge in development rollers 

2008 PPIC Aging of donor rolls 

2008 NIP24 Characterization for high speed EP 

http://www.qea.com/
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• Roll coating voltage, VR   
• Air gap voltage, VA   
• VA > Paschen threshold 
• PR surface charged, QP 

•  Counter-charge QR on Roll  
•  Air-gap voltage, VA  
•  VA < Paschen threshold 
•  PR charging stops 
•  To continue charging,  
  QR must be neutralized  
      to VR and  VA 

• Dielectric relaxation in roll 
coating important for high 
charging efficiency  

    

 Vb 

+  +  +  + + QR 

  –  –  –  –  – QP 

Dielectric Relaxation in CR Charging 

CR Coating, VR 

Air Gap, VA 

Photoreceptor, VP 

A qualitative description: 
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Toner Charging in Single Component 
Development 
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 Counter-charge (+) injection from VB 

 VRC decays, dielectric relaxation of roller coating  
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MB

 Donor Roll = Conductive Core + Semi-ins. Overcoat 
 Toner Charging (–) at Metering Blade (M-B) 

M-B 
 – – Toner – –   
 + + + + + + 

Roll Coating 
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Toner Deposition in Single Component 
Development 
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 Toner Deposition on Photoreceptor (PR) 
 Counter-charge (–) injection from VB to Coating 
 Dielectric Relaxation of Roll Coating layer 

Dev.

Roll

PR

VB

VB

MB

Dev.

Roll

PR
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VB

MB
VB 

Roller Coating 
 – + – + – + –  

– – – Toner – –  

   + + + + + + + PR 

Counter-charge 
injection  
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Electrostatic Transfer of Developed Toner 
 In transfer, a bias voltage VB is applied to 

the multiple layers in the transfer nip 
 VB reverses the field in the toner layer to 

drive the toner towards the receiving media 
 The semi-insulating receiving media (i.e., 

paper, belt) is typically much thicker  than 
the other layers (see figure) 

 Dielectric Relaxation in receiving media 
• Shifts most of VB to the toner layer 
• Enables efficient transfer  (without very 

high bias voltages) 
• Dielectric relaxation is due mostly to 

charge injection into the receiving media 
(not due to intrinsic charge carriers or 
conductivity in the media) 
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Common Configuration in  
Semi-insulating Devices &  

Implications on Characterization Method 
 VB applied to insulator & semi-insulator 

(charge roller, development roller or transfer 
roller/belt) in series 

  Voltage across semi-insulator decays with 
time  Dielectric Relaxation 

  Low intrinsic charge density 
  Need charge injection 
 Performance of process closely related to 

efficiency of dielectric relaxation, charge 
injection and transport 

 Due to the complexity in the charge 
transport processes  in dielectric relaxation 
– best characterize by a test method that 
simulates actual device! 
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Process Time 
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Conventional Roller & Belt 
Characterization Method 

• DC bias voltage is applied between an electrode in contact with 
the charge roller and the roller shaft.   The current flow through 
the roller ISS is measured, typically at “steady state”. 

• The roller resistance is the ratio of the applied VB to the 
measured ISS. 
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Limitations of Conventional 
Resistance Method 

• Most serious is that the underlying physics is not 
consistent with the process physics: 
– Ohmic relaxation model does not apply 
– Semi-insulator to electrode contact is non-ohmic 
– Test configuration does not simulate process configuration 

-  no way to duplicate charge transport physics crucial to 
process performance  (e.g., electric field dependence) 

– Measurement time scale is wrong 
• Practical issues: 

– Contact pressure dependence 
– No mapping capability 

• Results do not reliably or consistently predict 
performance 

13 
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Ohmic vs Non-Ohmic Contact 

 “Ohmic” contacts: 
      Supply charge to maintain q = qi (intrinsic charge 

density) in sample  
Current density: J = sEo = mqiEo  (Eo = applied field) 
 

 “Non-Ohmic” contacts:  
Supply more or less charge (injection) 
Charge density q(x, t)  qi ;  E(x, t)  Eo ;  J  sE 

 

 Semi-insulating devices are typically Non-ohmic.  
Injection at interface is key to the relaxation process. 
 

 Conductivity, s : not a good figure of merit! 
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An Example of the Role of Injection –  
Photo-induced Discharge in Photoreceptor 

 In the dark: an insulator with high resistivity with long 
dielectric relaxation time t   

 Exposed to light:  charges photo-generated in CGL;  charge 
injection into CTL  Voltage decreases  Photo-induced 
Dielectric Relaxation 
 

 

15 

Light on off
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“Open-Circuit” Method is Preferred to 
Simulate Actual Device Configuration 
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Charge Transport Model of  
Dielectric Relaxation (1) 

 Samples characterized by: 
• Charge densities: qp(x,t), qn (x,t) 
• Charge mobility: mp, mn 

 Charge Continuity: 
      q(y, t)/t = – (mqE)/y 
 Boundary conditions:  

• Injection current at y = 0    
      J(0, t) = sE(0, t),  s = Injection strength 

• Interface charge: QL = eIEI – eDED(L) 
(Gauss’ theorem) 

• Bias VB = VD + VI   (constant in time) 

 Solved by Numerical iterations 
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 Voltage VD(t) across semi-
insulator (dielectric) depends 
strongly on injection strength 
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  Photoreceptor surface voltage increases with time 
 Significant effect of charge injection strength in time t  100 to  
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Toner Charging (–) at Metering Blade (MB) 
Counter-charge (+) injection into Roll Coating 
 Dependence on injection strength s in t  100 to  
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Blade 

Donor 
Roll  

PR 
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Toner deposition (–) on photoreceptor PR 
Counter-charge (-) injection into Roll Coating 
 Dependence on injection strength s in t  100 to  
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 Dielectric Relaxation in receiver 
• Enables efficient transfer without very high VB  
• increase transfer efficiency;  depends significantly 

on injection strength s 

Electrostatic Transfer of  
Developed Toner 
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 Close resemblance in analytical results for voltage decay and 
processes provides strong support for  the critical role of 
dielectric relaxation on EP performance 

 Significant effects of s in t = 10~100 to, i.e., transient behavior 

  
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• Roller or Belt Relaxation Time: 
Charge transit time to = L2/mVB   5 ms; with: L  50 mm, 
m  10-5 cm2/V-s, VB  500 volts; full relaxation time is tP 
> 100to  0.5 sec or 500 ms.   

Relaxation Time vs Process Time 

• Therefore must 
consider 
transient 
behavior in 
characterization; 
particularly for 
high speed 
printing.  
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Implementation – the ECD Method 
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Primarily Measurements in The  
ECD Method:  V, I and Re Mapping 
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Other Measurements:   
ECD Voltage Decay & Steady State Current 
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Application Examples 

• Charge Roller 
• Development Roller 
• Transfer Belt 
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Charge Roller Mapping 
• The full-body ECD map shown below for a poor charge roller clearly 

demonstrates the correlation between VECD and print quality. 
• The non-uniformity in VECD can be mapped directly to a print density 

variation map (on a gray page) and a background map (on a white page).  
Such results clearly demonstrate the efficacy of the ECD method. 

* Charge roller circumference 
279.4mm (11”) 

37.7mm* 

ECD Full-body Map 

Print 

60 100 140 180 volt 



NIP 24 September 2008, Pittsburgh, PA 
30 

Good Roller 
50% Gray Page 

ECD Re Map 

* The ECD Re map is scaled to physical size. 
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Bad Roller 
50% Gray Page 

ECD Re Map 

* The ECD Re map is scaled to physical size. 
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Dot Gain, Optical Density and Tone Reproduction
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Application Example – Material 
Formulation 

Use of ECD-DRA in Roller Materials Development
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New 

Application Example – Roller Aging 
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Development Roller 

A cut in the roller 
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ITB – Failure Analysis 
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ITB - Benchmarking 
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Summary 

 Performance of EP sub-processes using 
rollers and belts is controlled by 
dielectric relaxation (DR) of semi-
insulating layer  

 Dielectric relaxation induced by charge 
injection from bias voltage 

 Full relaxation of semi-insulator often 
requires time longer than available in 
high speed Electrophotography 
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Conclusions 

 Electrical characterization of rollers and 
belts should emphasize transient values 
& spatial variations in DR 

 Observations of spatial averages, at fully 
relaxed states are insufficient  

 Open-circuit voltage measurements, 
efficiently scanning large area of sample 
– an extremely valuable tool for R&D, QC 
and failure analysis 
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