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   The physics of dielectric relaxation in semi-insulating materials is critical to the performance of devices 
such as the rollers and belts used in electrophotography. In recent years we have investigated the basic 
principles of dielectric relaxation and a practical method of device characterization called Electrostatic 
Charge Decay (ECD). We have also developed computer models to simulate dielectric relaxation in 
semi-insulators in EP subsystems from first principles of charge transport theory.  In this paper, we 
describe our computer modeling methodology and its applications to the simulation of EP subsystems and 
the ECD method.  Examples from the numerical analysis are shown, together with ECD measurement 
results, to demonstrate the non-Ohmic nature and the critical role of charge injection in dielectric 
relaxation. 

 

1. Introduction 
In electrophotography (EP), devices such as rollers and 

belts are used in toner development and transfer, as well 
as in charging photoreceptors. The structure of these 
devices consists of a thin semi-insulating (SI) dielectric 
layer on a conductive substrate (or shaft). The SI 
dielectric layer comes in contact with an insulator layer 
(toner and/or photoreceptor). A bias voltage is applied 
across the two layers, as shown schematically in Fig.1. It 
has been shown that efficient decay of the voltage across 
the SI dielectric layer (i.e., dielectric relaxation) is 
important for efficient performance of the 
sub-processes.1-4 

 
 
 
 
 
  
 

Fig.1. Series-capacitor model of rollers/belts in EP 
sub-processes. 

To analyze the dielectric relaxation in SI, a simple RC 
equivalent circuit model is often applied. In this model, 
the voltage across the dielectric layer is expected to decay 
exponentially (dielectric relaxation) with a time constant τ 
= RC, where R is the resistance of the dielectric layer and 
C is the sum of the capacitances of the two layers.4  In this 
model, a key controlling variable for dielectric relaxation 
is the resistance R in the semi-insulator, and the prevailing 
technique for evaluating semi-insulating devices is to 

measure the resistance. 
The traditional electrical resistance measurement 

method involves applying a DC voltage V between an 
electrode on the roller/belt surface and the conductive 
substrate/shaft. The resulting current I (or current density 
J = I/A, where A = electrode contact area) is measured, 
and the roller/belt resistance is computed using Ohm’s law, 
R = V/I or V/J.  While this traditional approach is 
straightforward in principle, the relevance of the results 
for predicting EP device performance is questionable for a 
number of reasons: 
 
1) Resistance R = L/σ, where L is the layer thickness and 

σ the conductivity. The latter is the product of 
mobility µ, and the intrinsic charge density qi, σ = µqi. 
In semi-insulating devices, it has been shown2 that µ 
and qi influence the dielectric relaxation process 
independently and hence, not surprisingly, 
measurement of R or σ alone cannot predict EP 
device performance reliably. 

2) Both R and σ are bulk properties independent of the 
contact condition at the interface with the electrodes. 
The measured current is determined by the resistance 
only if the electrode can supply charges sufficiently 
to maintain the intrinsic value qi  (i.e., Ohmic 
contact). However, in most EP rollers/belts, the 
contact between the SI dielectric layer and the 
substrate is non-Ohmic in nature. The charge 
injection from the contact depends on the amount of 
free charge available and the field strengths at the 
contact, and on the mechanical conditions (e.g. 
pressure, adhesion, smoothness) of the interface. 

3) Intrinsic charge density qi is typically very low in 
semi-insulators. Consequently, the steady state 
current measured in the resistance measurement 
method is unlikely governed by the intrinsic charge, 
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but rather, controlled by the injected charge from the 
interface. In other words, the traditional resistance 
method does not really measure the bulk resistance 
(or conductivity) as assumed in the Ohmic model.  

4) In resistance measurement, a constant voltage is 
applied across the semi-insulator; whereas in an EP 
sub-system (Fig. 1), the bias voltage is applied not 
only to the SI dielectric layer, but also to layers of 
insulators (photoreceptor, toner layer and/or air-gap) 
in series. As such, the voltage across the SI layer is 
not constant but decreases with time. This causes the 
field, and hence the charge injection from the 
substrate, to vary with time. In other words, the 
rollers/belt in EP sub-processes is in an open-circuit 
condition, not the closed-circuit condition applied in 
resistance measurement. 

5) Real-world EP devices are likely to exhibit some 
degree of non-uniformity. Another disadvantage of 
the resistance contact measurement method is that it 
does not lend itself to mapping of the entire device. 

 
To circumvent the shortcomings of the traditional 

resistance measurement method and to enable efficient, 
non-destructive mapping of rollers and belts, we have 
introduced an EP device characterization technique called 
“Electrostatic Charge Decay” (ECD).5-7 In the ECD 
method, the test sample on a grounded substrate is 
charged with a scanning corona at the surface. During 
scanning, the current through the sample to ground and 
the surface voltage are measured, the latter by means of a 
non-contact electrostatic probe immediately following the 
charger. A schematic of the ECD method is shown in Fig. 
2. In the voltage mode, the decay of surface voltage at a 
position is monitored after the charging corona passes that 
position. In the current modes, the decay of corona current 
with charging time (and with the build-up of surface 
voltage) is monitored. The time and space dependent 
voltage or current provide quantification of the dielectric 
relaxation in the SI. Because of the use of a scanning 
corona and non-contact voltage probe, the technique 
enables non-destructive, efficient mapping of a large area 
of the sample for evaluation of device uniformity. 

2. Computer Simulation - Series Capacitor Model of  
EP Subsystems and the ECD Method 

With the charge mobility µ in a typical semi-insulator 
used in electrophotography as low as 10−5cm2/V-sec, the 
transit time required for a charge to move across a layer of 
thickness L ≈ 100 µm in a field E ≈ 105 V/cm is tT = L/µE 
≈ 10−2 sec. This is the same order of magnitude (if not 
longer) as the dielectric relaxation time computed from 
permittivity and conductivity, i.e., tR= ε/σ ≈ 10−3 sec, with 

permittivity ε  ≈ 10−13 F/cm and conductivity σ  ≈ 10−10 
S/cm. Under this condition of tT ≈ > tR, space charge 
effects, i.e., the influence on the motion of a charge from 
other charges, cannot be ignored in the relaxation process. 

 

 Semi-Insulator 
(Dielectric) 

Corona 
Jc 

- - - - - - - - - - -  
 V 

 x 

 0 

 L 

G 
 

Fig.2. Schematic of an ECD test. 

The motion of charges in the SI layer is described by 
the continuity equation for the positive (or negative) 
charge densities qp (or qn). Omitting subscripts p and n, 

∂q(x, t)/∂t = −∂J/∂x = −(∂/∂x)(µqE) (1) 
where J(x, t) = µqE is the conduction current density, µ is 
the charge mobility and E(x, t) is the electric field in the SI 
layer. The boundary condition at the substrate interface, x 
= 0 in Figs.1 and 2, is specified by the current injected into 
the dielectric layer, J(0, t). This injection can be expected 
to increase with the field E(0, t) at the interface. For lack 
of more precise knowledge, it is sufficient to assume that 
it is linearly proportional to E(0, t), with a proportionality 
constant s specifying the injection strength: 

Jp(0, t) = sE(0, t), and Jn(0, t) = 0, if E(0, t) > 0 (2a) 
Jp(0, t)= 0, and Jn(0, t)= sE(0, t), if E(0, t) < 0 (2b) 
In the series-capacitor configuration (Fig.1), there is no 

conduction current and no charge injection into the 
insulator from the top electrode at x = L1 + L2. Another 
boundary condition relates the charge QS(t) accumulated 
at the interface (x = L1) to the fields in the two layers at the 
interface x = L1 by Gauss’ Theorem as,  

QS(t) = ε2E2(t) − ε1E1(L1, t) (3) 
where ε1 and ε2 are the permittivity of the SI layer and  
insulator layer, respectively. The field E1(x, t) in the SI 
layer is related to the charge densities by Poisson’s 
equation,  

∂E1(x, t)/∂x = [qp(x, t) + qn(x, t)]/ε1 (4) 
In the insulator, the bulk charge density is always zero, 

and hence, the field E2(t) is always uniform in x. 
At t = 0, the bulk charge densities have the intrinsic 

values, qp(x, 0) = −qn(x, 0) = qi, and the interface charge is 
QS(0) = 0. Noting that E1(x, 0) is also uniform in x, Eq.(3) 
gives the initial fields and voltage divisions as,  

V1(0) = –E1(x, 0)L1 = −VBL1/ε1(L1/ε1 + L2/ε2) (5a) 
V2(0) = – E2(0)L2 = −VBL2/ε2(L1/ε1 + L2/ε2) (5b) 

where the applied bias voltage is VB = V1(0) + V2(0). 
In the ECD experiments (Fig.2), the corona current, 

JC(t), incident on the SI surface can be represented by, 



    

JC(t) = Jmx[1 – V(t)/Vmx]  (6) 
where Jmx and Vmx are empirically determined parameters, 
representing the initial (maximum) current and the final 
(maximum) voltage, respectively. The surface charge 
density QS(t) varies with time as JC deposits charges on 
the surface, and the positive and negative conduction 
currents Jp and Jn in the layer arrive at the surface: 

dQS/dt = – JC(t) + Jp(L, t) + Jn(L, t) (7) 
The field at the surface x = L is related to QS by Gauss’ 

theorem: εE(L, t) = – QS(t), where ε is the sample 
permittivity. The injection of (corona) charge from the 
surface into the SI layer is practically negligible. Starting 
from the initial conditions that QS(0) = 0, V(0) = 0, E(x, 0) 
= 0, qp(x, 0) = – qn(x, 0) = qi, and JC(0) = Jmx, the build-up 
of the layer voltage V(t) and the decay of corona current 
JC(t) can be calculated from the continuity equation, 
Eq.(1), and the injection currents, Eq.(2). The decay of 
surface voltage after the termination of corona charging 
can be examined by setting JC = 0 in the above procedure. 

To examine the progress of dielectric relaxation of the 
SI layer, the voltage and/or the current are calculated by 
numerical iterative solution of the above equations. The 
computation procedure is illustrated in the flow chart 
shown in Fig.3. 

 
Fig.3. Flow chart of numerical procedure for modeling 

dielectric relaxation.  

3.  Examples of Numerical Simulation of Dielectric 
Relaxation 

In the following discussion and figures, the normalized 
units in voltage, current and time are defined in Table 1. 

An example of numerical results for the dielectric 
relaxation in the series-capacitor configuration (Fig.1) is 
shown in Fig.4. The thickness L2 and the permittivity ε2 of 
the insulator are assumed (without loss of generality) to 
be ½ of the corresponding values of the SI layer. Thus, 
both layers have the same capacitance C = ε/L, and the 
same initial voltage V1(0) = V2(0) = VB/2. The strength of 
charge injection from the substrate s is varied over more 
than 3 orders of magnitude, while the intrinsic charge 
density is assumed to have a small value qi = 0.1. 

Table 1. Normalized units used in the figures  
Unit Definition Typical value 
Thickness L0 SI thickness 10-2 cm 
Voltage V0 Bias voltage 103 V 
Permittivity ε0 SI’s 3x10-13 F/cm  
Mobility µ0 Hole’s in SI 10-5 cm2/Vsec 
Time t0 = L0

2/µ0V0 10-2 sec 
Charge density q0 = ε0 V0/L0

2 3x10-6 Coul/cm3 
Current density J0 =  ε0µ0 V0

2/L0
3 3x10-6 Amp/cm2 

Injection strength s0 = µ0q0 3x10-11 S/cm 
 
An important observation in Fig.4 is that voltage 

relaxation in semi-insulator is non-ohmic, i.e., not 
exponential or, nonlinear in a plot of V vs log time t as 
predicted by an RC model. Instead, the relaxation is 
controlled mostly by the injection strength s at the low 
charge density level analyzed. On the other hand, at high 
charge density (for qi ≥ 1), similar calculations show that 
relaxation is almost independent of injection s.  

In Fig.4, the time required for full decay increases as s 
decreases (≈1/s). Such dependence of relaxation 
characteristics on charge injection is not considered by the 
simple RC equivalent circuit model. 
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Fig.4. Decay of SI layer voltage with time, for various 

values of charge injection strength s. 

Fig.5 shows the numerical results of decay of charging 
currents (solid curves) and the rise of surface voltage 
(dashed curves) with time during an ECD test of a 
semi-insulating sample (Fig. 2). After a charging time t 
≥100, both the current and the voltage reach steady state 
values which are dependent on the injection strength s. On 
the other hand, similar simulations using qi and µ in a 
broad range of practical interest show that the steady state 
voltage and current values are practically independent of 
these parameters. Utilizing such knowledge obtained 
through numerical analysis, the steady state current 
measured by the ECD method in the current mode (Fig.6) 
can be used to estimate the injection strength s.6 
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Fig. 5. Decay of charging current (solid curves) and rise 

of surface voltage (dashed curves) with time in 
ECD experiments for various injection strength s. 
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Fig.6. Charging currents measured on different  
samples in a current-mode ECD test. 

Fig.7 shows the calculated ECD voltage decay after the 
charging approaches the saturation value at t = 10 (the 
vertical dashed line). The voltages are again seen to be 
well distinguished by the injection strength s. Figure 8 
shows a set of decay curves obtained from ECD 
measurements of commercial intermediate transfer belts 
for EP. Comparing the analytical and experimental results, 
it is clear that the charge transport theory underlying the 
computer model in this paper offers a clear alternative to 
the traditional RC equivalent circuit model of dielectric 
relaxation. 

4. Summary and Conclusions 
The physics of dielectric relaxation in semi-insulators 

is critical to the performance of rollers/belts in 
electrophotography. In this paper, we suggest that analysis 
and measurement of dielectric relaxation should be 
performed under open-circuit conditions to closely mimic 
practical EP sub-processes. Further, in semi-insulating 
devices, dielectric relaxation is mostly due to charge 
injection at the interface, not the low intrinsic charge 
density and low mobility in the bulk. Traditional 
resistance measurement and simple RC equivalent circuit 
models, assuming Ohmic contact and exponential decay, 
do not simulate EP subsystem correctly nor account for 

the important role of charge injection. Alternatively, the 
Electrostatic Charge Decay (ECD) technique, which 
simulates the corresponding EP sub-processes closely, 
makes possible efficient, non-destructive measurements 
of voltages or currents to provide information on device 
uniformity, charge injection, the efficiency of dielectric 
relaxation, and hence the performance of the EP 
semi-insulating devices. 
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Fig.7. Calculated decay of ECD voltage after a  

charging time tchg = 10, for various s values. 
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Fig.8. Decay of ECD voltages measured on four 

commercial intermediate transfer belts. 
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