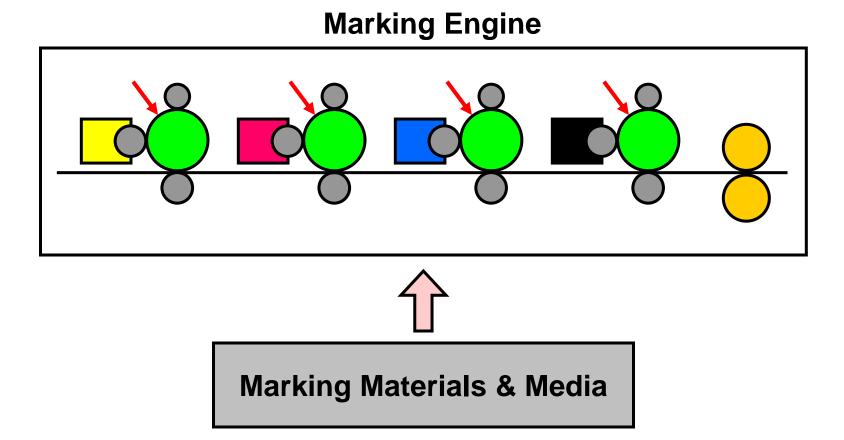
Instrumentation for Control & Evaluation of Color Print Quality

Quality Engineering Associates (QEA), Inc. Contact information as of 2010: 755 Middlesex Turnpike, Unit 3 Billerica MA 01821 USA

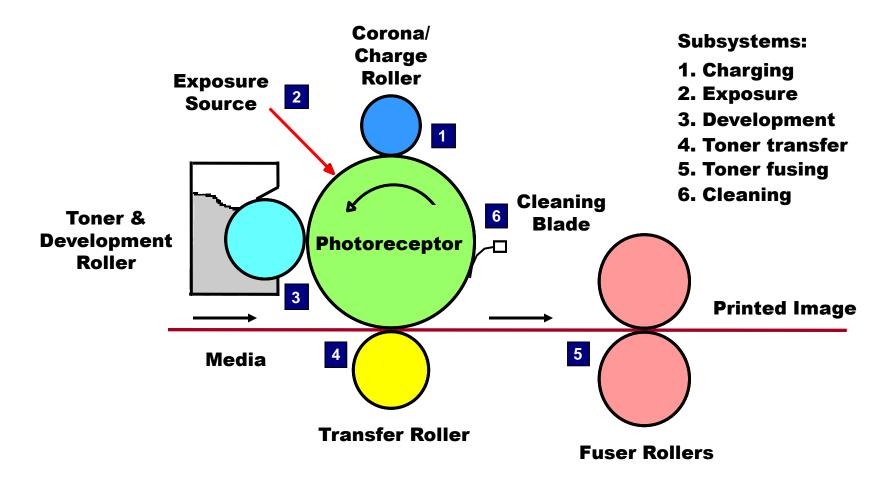
www.qea.com

A Tutorial Presented at: Toner & Photoreceptor Conference, The Tiara Group Santa Barbara, Jun 4-7, 2006


Outline

- Print quality in EP color printing controlling factors
- Print quality requirements
- Instrumental analysis:
 - Tools
 - Methods
 - Standards
- Emphasis on the basics and the principles; application examples will be added during the presentation

A Color Electrophotographic Printer


All components & subsystems affect print quality to varying extent

Electrophotography - Basic Processes

(2005 Toner & Photoreceptor Conference Tutorial)

Photoreceptors

(2005 Toner & Photoreceptor Conference Tutorial)

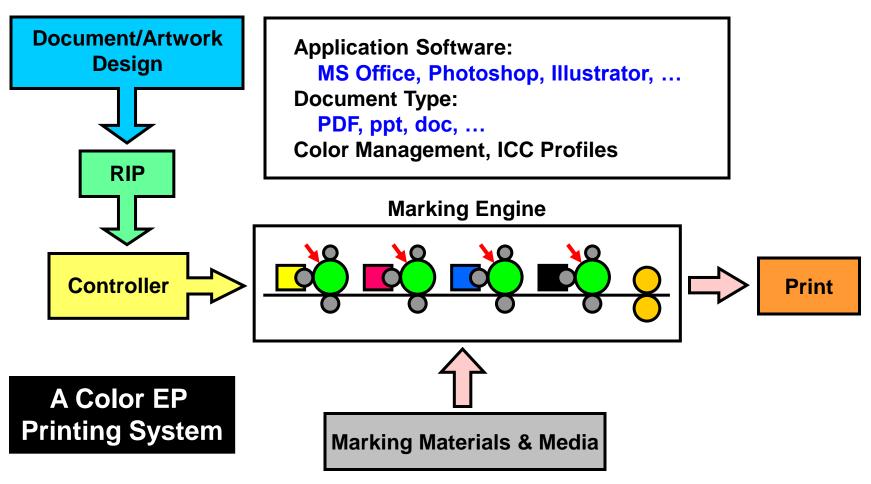
- Charge acceptance (background)
- Dark decay (background)
- Photosensitivity/PIDC (print density)
- Residual (ghosting)
- Cyclic fatigue (process stability)
- Wear & abrasion resistance (life & stability)
- Uniformity & defects (image quality)

Semi-insulating Devices

(2005 Toner & Photoreceptor Conference Tutorial)

- Plenty of examples in the EP Process:
 - Charge roller
 - Development roller (donor roll)
 - Transfer media belt and paper
- Dielectric relaxation is key to performance
 - Image quality and speed
- Uniformity and defects
 - Image quality

Toner in Development, Transfer & Fusing


(2005 Toner & Photoreceptor Conference Tutorial)

- Size average and distribution
 - Tone reproduction, uniformity & graininess, line & edge quality, offset appearance, ...
- Charge Q/M and q/d
 - Tone reproduction, uniformity & graininess, line & edge quality, ...
- Fusing latitude
 - Fusing temperature & energy consumption
- Wax & oil
 - Offset appearance & gloss uniformity

Color EP Print Quality is a System Issue

Controlling factors go beyond the print engine

Color Print Quality Requirements

- Quality requirement depends on applications:
 - Office documents
 - Digital photographs personal or commercial printing
 - Commercial printing graphic arts, brochures, packaging materials, labels
- There are however a few important fundamentals

Print Quality Requirements (1)

- Tone and color reproduction
 - Natural tone scale
 - Neutral gray balance
 - Rich details in highlight and shadow
 - Pleasing memory colors (flesh tone, blue sky, green grass, …)
 - Vibrant saturated colors (graphic arts, presentations, computer graphics, illustrations, ...)
 - Light, bright pastels (ads, maps, ...)
 - Smooth gradient (metallic, rendering, …)

Print Quality Requirements (2)

- Sharpness and fine detail
 - Sharp and accurate lines
 - Crisp and legible texts
 - Clear reverse and color fonts
 - Sufficient line screen & good halftone quality

Note: Sharpness & detail is strongly affected by:

- Correct image processing & rendering in RIP
- Good color registration

Print Quality Requirements (3)

- Noise and Image Defects
 - Low graininess or extraneous background ("micro-uniformity")
 - Uniform appearance with minimum banding, mottle or coalescence ("macro-uniformity")
 - Minimum inter-color bleed or color adjacency issues
 - No significant image defects (e.g. black or white spots, ghosting, ...)

Print Quality Requirements (4)

- Gloss Appearance
 - Gloss level matching customer preference (matte vs gloss)
 - Offset look and feel
 - No unacceptable differential gloss through highlight, midtone and shadow
 - Low haze
 - High distinctness of image (DOI)

Print Quality Evaluation Methodologies

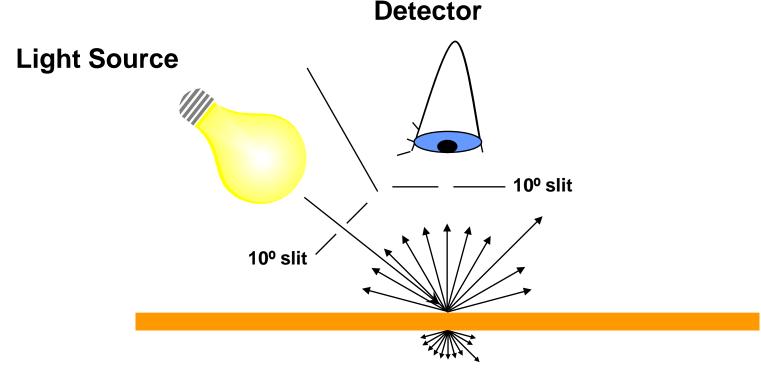
- Subjective Assessment by Human Observers
 - Customer preference
 - Focus group study
 - Psychometric scaling
- Instrumental Objective Measurements
 - Quantitative analysis
 - Proprietary algorithms vs industry and international standards

Instrumental Analysis

- Two different types of instrumentation:
 - Dedicated instruments
 - Densitometer
 - Spectrophotometer
 - Gloss meter
 - DOI meter
 - General purpose instruments
 - Image analysis systems, camera or scanner based
- The two types are complementary

Print Quality Analysis Instruments

	Dedicated Instruments				Image Analysis Systems	
Print Quality Requirements	Densitometer	Spectrophotometer	Gloss Meter	DOI Meter	Camera	Scanner
Tone Reproduction Density Tone reproduction curve Gradients	√+ √	√+ √+			イイ	イイ
Color Reproduction Gray balance Color gamut Color fidelity & difference		√+ √+ √+			イイイ	$\overrightarrow{}$
Gloss Appearance Gloss level Differential gloss Haze DOI (Distinctness of Image)			√+ √	√ √ √+		
Sharpness & Detail Resolution & MTF Line quality Text quality Color registration Halftone (dot) quality					√+ √+ √+ √+ √+ √+	√+ √+ √+ √
Noise and Image Defects Graniness Mottle Banding Background Ghosting Black or white spots					√+ √ √ √+ √+ √+	√+ √+ √+ √ √+ √+


Note:

 $\sqrt{+} =$ Optimized $\sqrt{-}$ Supported

Density & Color Measurements - Standardized Reflectance

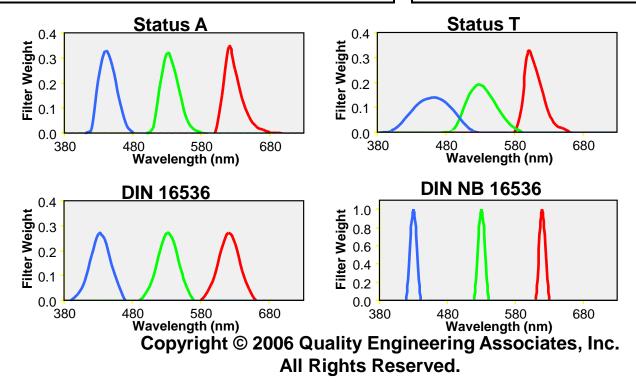
- Light source at 45°, sensor at 0° is the most common geometry in graphics art applications
- 10 degree wide source and detector slits

Densitometer

- Measures amount of light transmitted through or reflected from a material
- Encodes the result logarithmically, or,
 - Density = -log10(R) or-log10(T)
 - Where R = reflectance &
 T = transmittance (both from 0 to 1 or 0 to 100%)

R (or T), %	Density
0.1	3
0.32	2.5
1	2
3.2	1.5
10	1
32	0.5
100	0

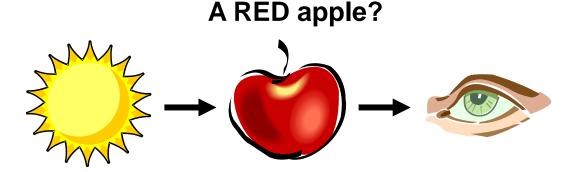
A Representative Densitometer (X-Rite)



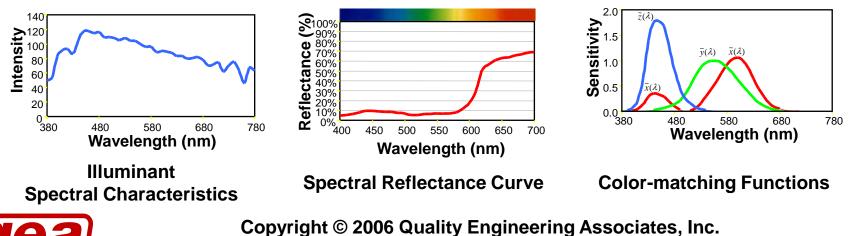
Color Densitometer

- Measures color density through narrow-band filters
- Measures colorants in photographic film or print media for quality control.
- Spectral response functions are not color-matching functions & cannot be used to compute tristimulus values.

Color Density Standards


- Status A (ISO 5/3)
- Status T (ISO 5/3)
- DIN (16536)
- DIN NB (16536)

Perceptual Color


- Density is important for process monitoring & control, but it has no use in color communication because it does not account for:
 - the light source characteristics or
 - human color vision
- Perceived color depends on the combination of:
 - 1) light source
 - 2) object spectral reflectance curve
 - 3) eye's sensitivity & brain's interpretation

Perceptual Color Space

- In 1931 the CIE standards committee developed a technique to correct this problem
- They developed standardized:
 - Light sources (D50 and D65 most common in graphic arts)
 - Human color vision (2° or 10°)
 - Computation method (color matching functions, color space transformation, uniform spaces ...)

All Rights Reserved.

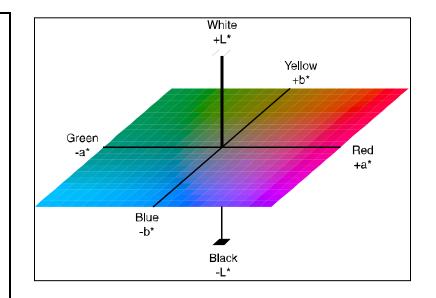
Tri-Stimulus Values
$$X = K \int_{380}^{780} S(\lambda) \overline{x}(\lambda) R(\lambda) d\lambda$$
Illuminant Spectral Power
 $S(\lambda)$ $Y = K \int_{380}^{780} S(\lambda) \overline{y}(\lambda) R(\lambda) d\lambda$ Spectral Reflectance
 $R(\lambda)$ $Z = K \int_{380}^{780} S(\lambda) \overline{z}(\lambda) R(\lambda) d\lambda$ Color Matching Functions
 $\overline{x}(\lambda), \overline{y}(\lambda), \overline{z}(\lambda)$

$$\mathbf{K} = 100/(\int_{380}^{780} \mathbf{S}(\lambda) \, \mathbf{y} \lambda) \, \mathbf{d} \lambda$$

380

gea

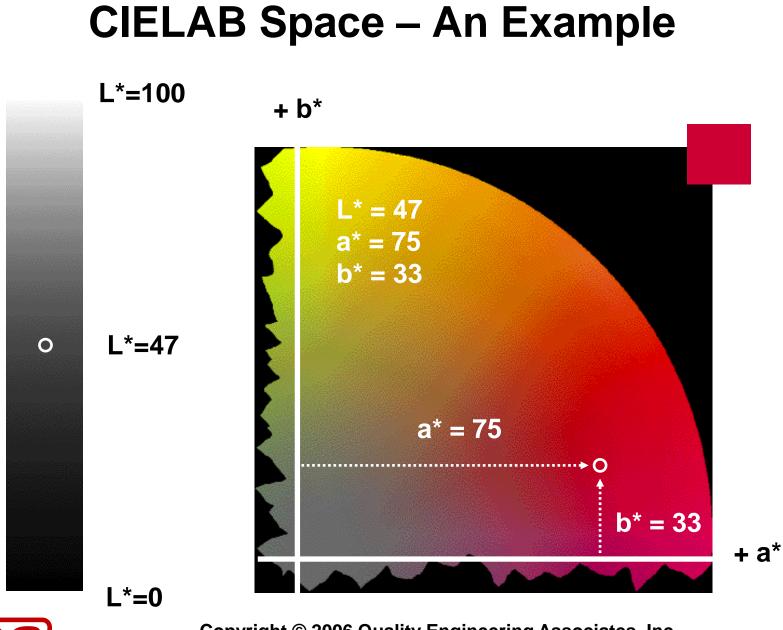
Copyright @ 2006 Quality Engineering Associates, Inc.All Rights Reserved.


CIELAB Color Space

- CIELAB color space is derived from the tristimulus values X, Y, Z of the sample and the tristimulus values X_n, Y_n, Z_n of the reference illuminant:
 - The lightness variable L* is

 $L^* = 116(Y/Yn)^{1/3}-16$

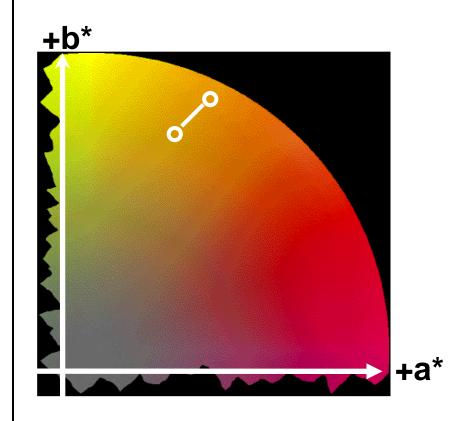
 The chromaticity coordinates a* and b* are


$$a^* = 500[(X/Xn)^{1/3} - (Y/Yn)^{1/3}]$$

 $b^* = 200[(Y/Yn)^{1/3} - (Z/Zn)^{1/3}]$

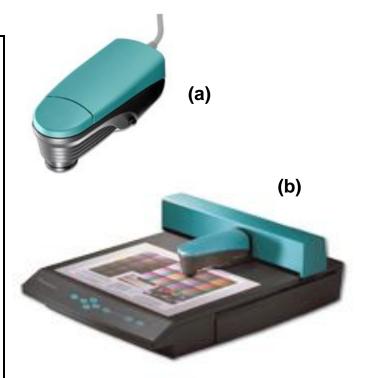
Same object, two illuminants

	Illuminant			
	А	D65		
L*	57.04	51.72		
a*	52.04	55.12		
b*	-10.60	-22.13		



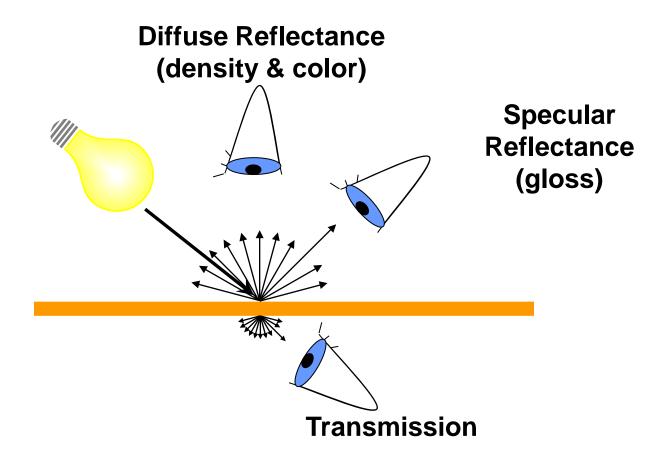
Color Difference

 $\Delta \mathbf{E} = \sqrt{(\Delta \mathbf{L}^2 + \Delta \mathbf{a}^2 + \Delta \mathbf{b}^2)}$


- The distance between two points in a 3 dimensional space.
- One ∆E is in theory the minimum just noticeable color difference. In practice, the JND depends on many factors such as the image content.
- Alternative ΔE (for improved correlation with visual assessment and color tolerancing), e.g. ΔE_{CMC} , ΔE_{94} , and ΔE_{2000}

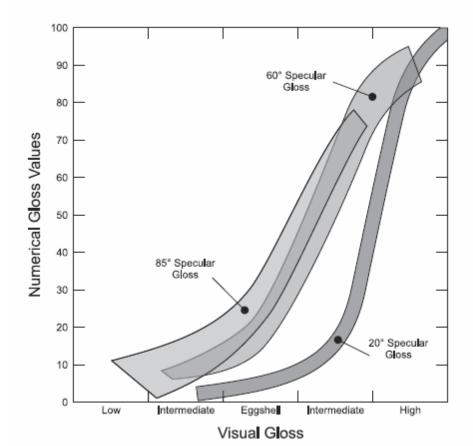
Colorimeter & Spectrophotometer

- Colorimeter
 - Uses filters to approximate the color-matching functions
- Spectrophotometer
 - Measures (samples) the reflection spectrum of a sample
 - Computes the tristimulus values. Typically output in L*a*b* or other color spaces
 - Computes color difference against a reference sample



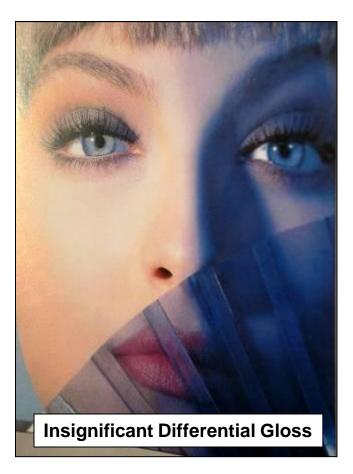
A representative spectrophotometer: (a) In stand-alone use, and (b) in a scanner (Gretagmacbeth).

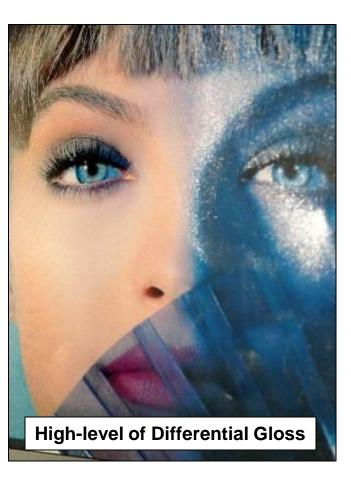
Specular Gloss Measurement


• What you see depends on where you look.

Choice of Incident Angles

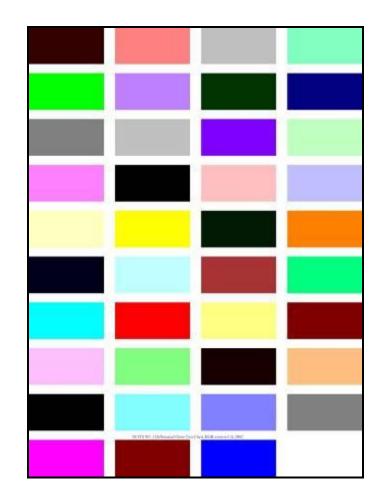
- Standard incident angles (from normal to the sample under test) are 20°, 60° and 75° (or 85°).
- Typically, 20° is for high gloss surface and 75° (85°) for low gloss surface.




Numerical gloss values vs visual gloss rating for ASTM Specular gloss standards (after Hunter and Harold)

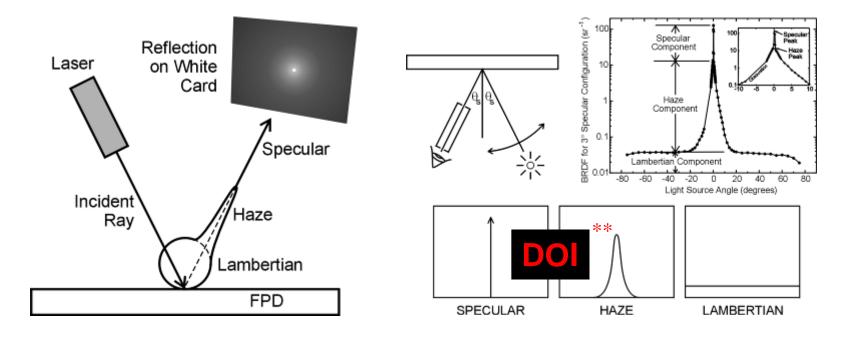
An Appearance Issue - Differential Gloss

(Prints photographed at a 45-45 geometry)



Differential Gloss Measurement

- ISO 19799 in preparation
- A 40 patch test chart
- Mean Gloss:
 - G_m = (ΣG₆₀)/40 If G_m > 70, use G₂₀ if G_m < 15, use G₇₅
- Differential Gloss:


 $\Delta \mathbf{G} = \mathbf{G}_{\max} - \mathbf{G}_{\min}$

• Just Noticeable Difference (JND) for G_{60} JND₆₀ ~ 0.14 $G_{60}^{0.96}$ ~ 0.14 G_{60}

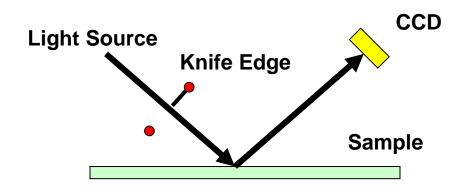
Different Components of Gloss*



* Ed. Kelly, Display Metrology, NIST, 2001 ** Added by M. Tse, QEA

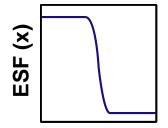
Distinctness of Image (DOI)

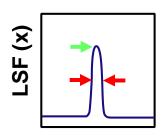
- There is growing recognition that gloss measurements alone often do not correlate well with customer preference.
- Following the lead of the automotive industry, who has been concerned with DOI and orange peel on paint and coating for a long time, DOI is a new addition to gloss appearance consideration in color print quality.



High DOI

Low DOI




The QEA DOI Measurement Method

- A sharp edge is projected onto the sample surface and its reflected edge profile is captured using a CCD camera.
- This profile is the edge spread function (ESF) and its derivative is the line spread function (LSF).
- If a surface is perfectly smooth (i.e., very high DOI), the ESF would be a step function and the LSF would be a delta function.
- Two convenient parameters to characterize the LSF are peak height and half width.

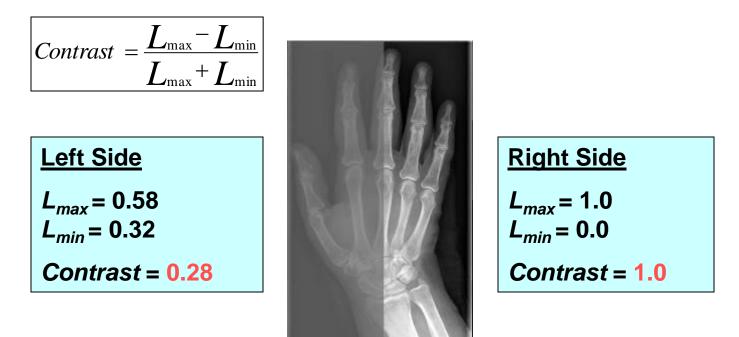
Gloss Meter and DOI Meter

A representative gloss meter (BYK Gardner)

A representative DOI meter (QEA)

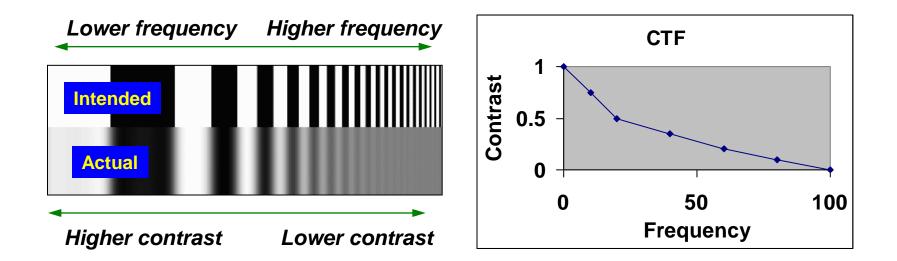
Image Analysis Systems

(Camera or Scanner -based)

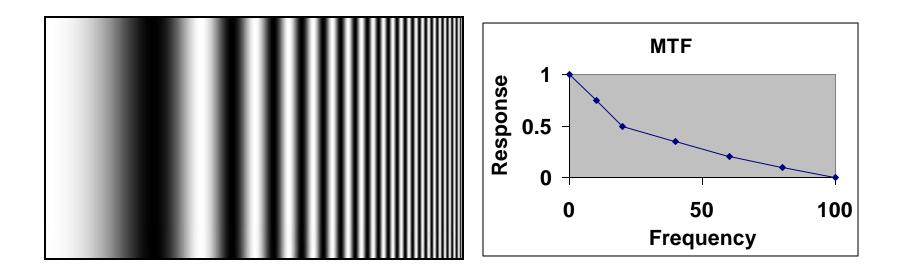

Representative scanner-based systems (QEA)

Representative camera-based systems (QEA)

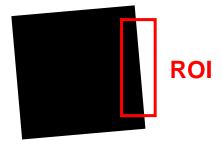
Sharpness & Detail

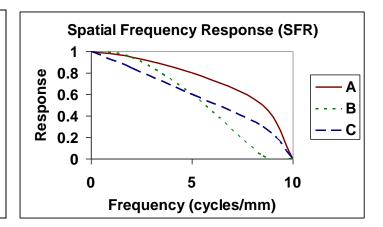

- Characterized by MTF (Modulation Transfer Function), CTF (Contrast Transfer Function), and SFR (Spatial Frequency Response).
- An example on contrast:

Frequency Dependence


- In most systems, contrast decreases at higher spatial frequencies.
- Objective measurement of contrast at several known frequencies is the Contrast Transfer Function (CTF) curve.

MTF - Sine Wave Test Patterns

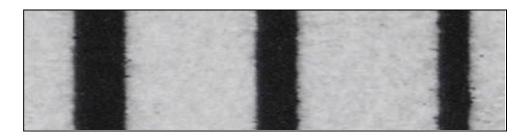

- To measure the modulation transfer function (MTF), a sine wave pattern is used instead of a square wave.
- Measurement and interpretation of MTF is similar to CTF.

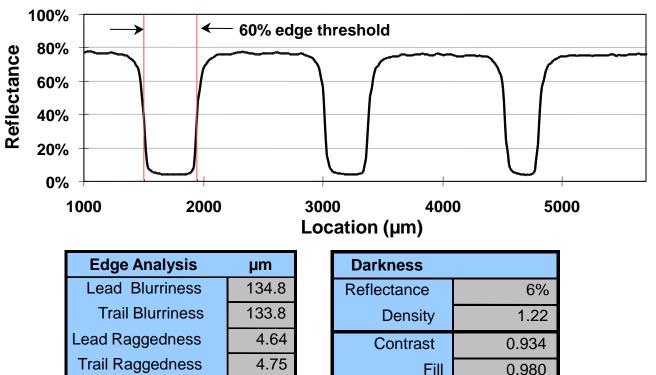


SFR Method - Slanted Edge Analysis

- An efficient and repeatable method using Fourier techniques to measure the spatial frequency response (SFR) to a slanted edge, based on the ISO 12233:2000 standard
- The slanted edge causes the edge gradient to be measured at many phases relative to the sensor.

- Interpretation and analysis of SFR curve is the same as MTF
 - Sample A: good response at all frequencies
 - Sample B: high contrast at low frequencies, but poor contrast at high frequencies
 - Sample C: lower contrast than B, but better response at higher frequencies




Line Quality

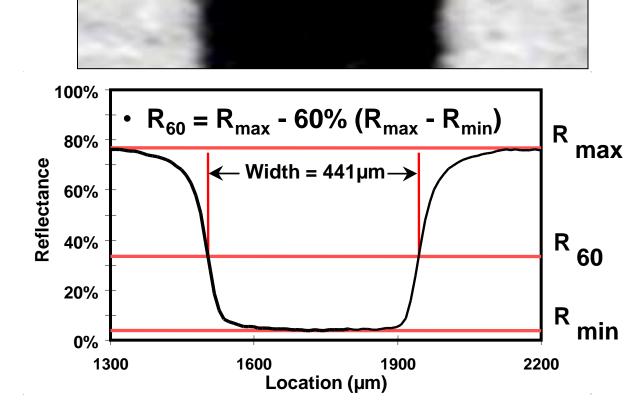
ISO 13660 Line Quality Attributes

- Width
- Density
- Blurriness
- Raggedness
- Contrast

• Fill

Copyright © 2006 Quality Engineering Associates, Inc. All Rights Reserved.

441.0


Line Width

Example of ISO-13660 Application - Line Width Determination

ISO 13660 Line Quality Attributes

- Width
- Density
- Blurriness
- Raggedness
- Contrast

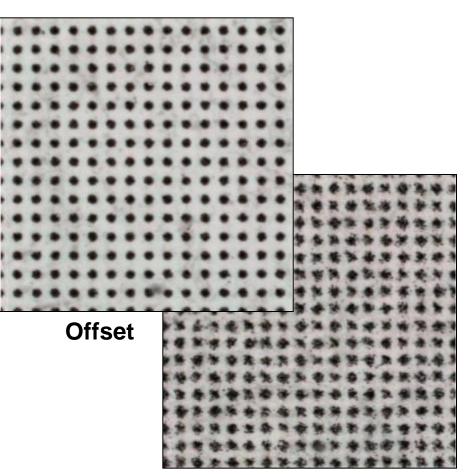
• Fill

- Line width is the distance between the R60 edge thresholds
- A robust technique against variations in ink & media reflectance

Copyright @ 2006 Quality Engineering Associates, Inc.

All Rights Reserved.

Text Quality


- Most important is *Stroke Weight*, e.g.
 - Stroke width
 - Stroke density
- Also important is line edge quality, e.g.
 - Raggedness
 - Blurriness
- ISO 19751 (in preparation)
 - Character Fidelity
 - Text Contrast
 - Text Uniformity

Halftone (Dot Quality) Analysis

- Line screen (Ipi)
- Screen angle
- Dot% (dot gain)
- Dot size & shape
- Mean and standard deviation

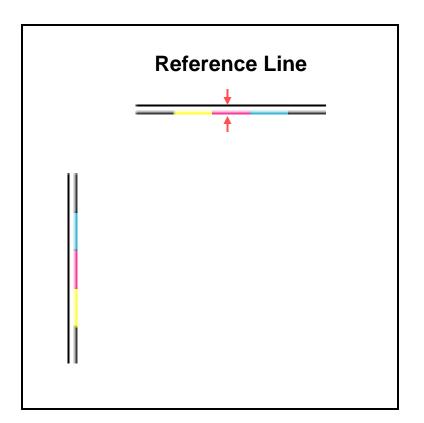
Electrophotographic

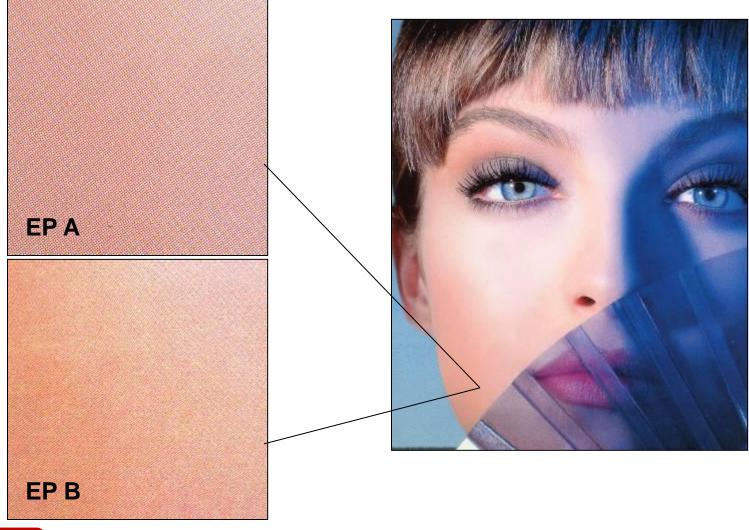


Copyright © 2006 Quality Engineering Associates, Inc.

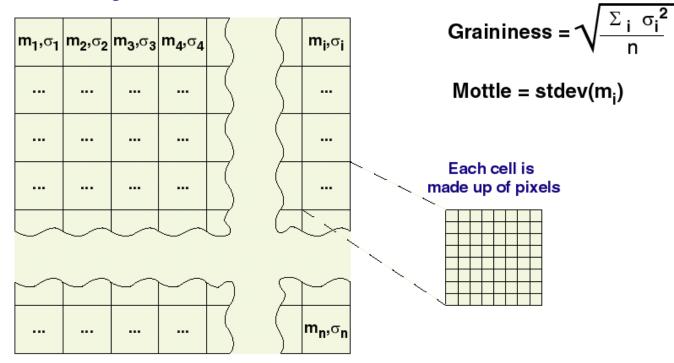
All Rights Reserved.

Registration Using Slanted Edge Analysis


- The same tool in SFR analysis can be used for registration analysis
- Target is a black/white transition
- In an ideal system, the transition would occur at the same spatial coordinate in all color planes
- In this analysis, the relative location of the transition in each of the color planes is reported


Registration Using CMYK Lines

- One of the process colors is used as a reference.
- The variation in distance between the reference line and the other process colors is a measure of color registration errors.


Graininess & Mottle

Graininess & Mottle Analysis Using the ISO-13660:2001 Method

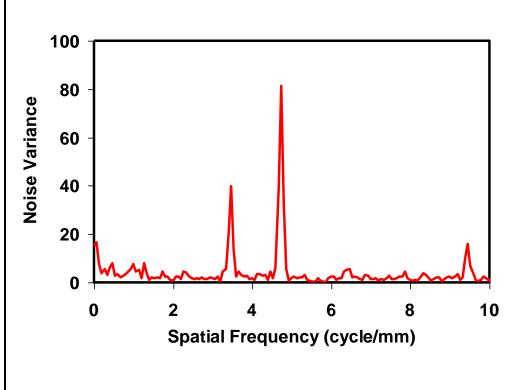
Image is divided into cells

* Extension in ISO 13660 revision and additional considerations in ISO 19751 are in preparation.

Image Noise Analysis Using the Noise Power Spectrum (NPS) Method (1)

- A powerful technique to analyze image noise (graininess) is to compute the Fourier transform of the auto-correlation function C(λ) of an image.
- When applied to a spatial image, this is often called the Wiener Spectrum W(ω):

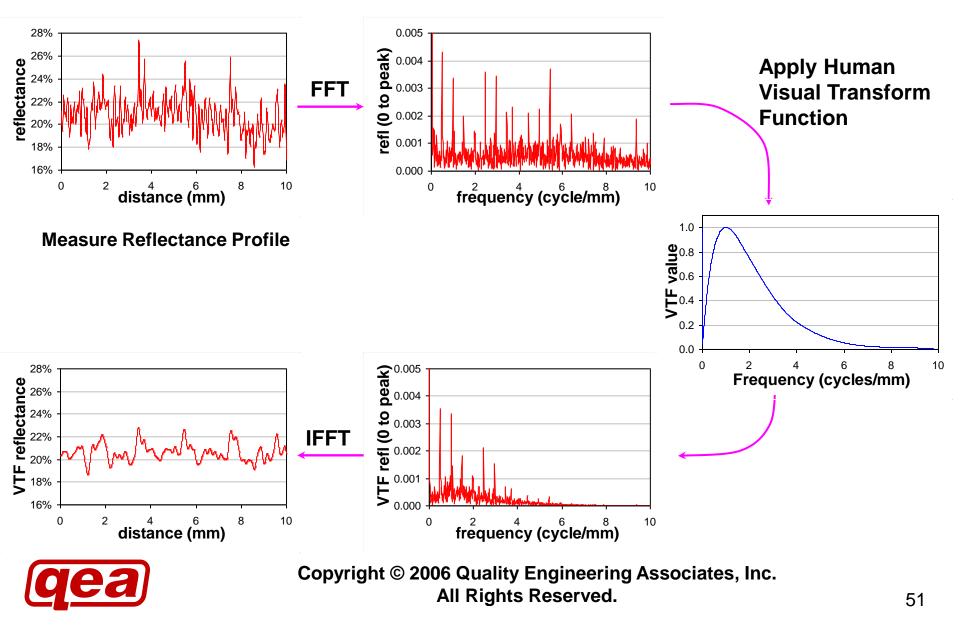
 $W(\omega) = F\{C(\lambda)\} = \int_{\infty} C(\lambda) \cdot e^{-i2\pi\lambda \omega} d\lambda$ $C(\lambda) = \int_{\infty} W(\omega) \cdot e^{-i2\pi\lambda \omega} d\omega$


- In practical terms, the Wiener Spectrum measures the noise variance at each spatial frequency.
- The area under the NPS curve equals the total variance of the image (σ²):

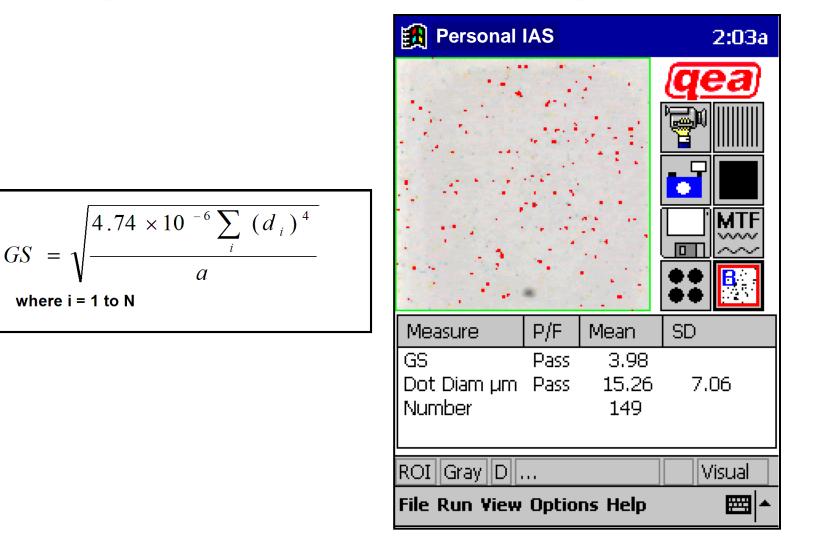
 $C(0) = \sigma^2 = \int_{\infty} W(\omega) d\omega$

Noise Power Spectrum (NPS) (2)

- Nyquist frequency, hence the range of frequencies analyzed, is determined by the spatial resolution of the image
- Frequency resolution is determined by the dimension of the ROI
- For A/B comparisons, the same spatial resolution (DPI) and ROI dimensions should be used


Banding Analysis

 A method for analyzing banding is a direct extension of the noise power spectrum (NPS) method:


> Perform a Fourier transform of the autocorrelation function of the image under analysis, and convolve with a model of the Human Visual Transform Function (VTF) to measure the noise variance at each spatial frequency on a scale corresponding to human sensitivity. For example, variations at very high frequencies (imperceptible to humans) are ignored.

Banding analysis

Background Measurement By RMSGS

Calibration Issues in Image Analysis System

- There are two key areas of calibration
 - Spatial (distance)
 - Reflectance (lightness and darkness)
- Spatial can be done using something like a chromeon glass Ronchi ruling.
- Reflectance calibration requires conversion from raw camera/scanner RGB to
 - Density/reflectance (e.g. ISO 5/3)
 - L*a*b* (CIE)
- Different quality metrics require analysis in density space or L*a*b* space. There are limitations in accuracy.

Practical Considerations in Image Analysis Systems

- Input devices & file formats
- User interface
- Interactive vs batch mode of operation
- Analysis and algorithms flexibility & extension capabilities
- Process control tools
- Reporting
- Database management
- Throughput vs resolution/accuracy

Correlating Objective Measurements & Subjective Assessments

 Importance of appearance based print quality measurements - putting the results of objective measurements in context:

"Beauty is in the eye of the beholder" "Fit-for-use"

- Quantifying subjective evaluation psychometric scaling
- An IQ framework Image Quality Circle (Engeldrum)

Published & In-Preparation ISO Standards *

- ISO-10561:1999 Method for measuring throughput of printing devices.
- ISO-13660:2001 Measurement of image quality attributes for hardcopy output – binary monochrome text and graphic images
- ISO-14545:1998 Method for measuring copying machine productivity.
- ISO-15775:1999 (amended 2005) Method of specifying image.
- ISO-19752:2004 Toner cartridge yield for monochromatic EP & MFP printers.
- ISO/IEC 18050 PQ attributes for machine readable digital postage marks.
- ISO/IEC 19751 Appearance-based image quality standards for printers
- ISO/IEC 19798 Toner cartridge yield on color EP devices
- ISO/IEC 19799 Method of measuring gloss uniformity on printed pages
- ISO/IEC 24712 Color test targets for measurement of office equipment consumable yield
- ISO/IEC 24734 Method for measuring digital printer productivity
- ISO/IEC 24735 Method for measuring digital copier productivity
- ??? Method to determine resolution of EP printers

* Partial list of relevant standards

For comments, feedback or further information, please contact:

Info@qea.com

Quality Engineering Associates (QEA), Inc. 99 South Bedford Street #4 Burlington, Massachusetts 01803 USA Tel: 781-221-0080 Fax: 781-221-7107 www.qea.com

