

NIP-22 Denver, September. 2006

On Counter-Charges in Development Rollers for Electrophotography

Inan Chen and Ming-Kai Tse

Quality Engineering Associates (QEA), Inc.

Contact information as of 2010:

755 Middlesex Turnpike, Unit 3

Billerica MA 01821 USA

www.qea.com

Counter-Charges in Development Rollers for Electrophotography

- Latent images developed by moving Charged Toners
 - Extensively studied.
- Counter-charges : Little attention
 - Reside in carrier beads (2-component development),
 or development rollers (Single-Component Dev.)
- Objectives:
 - Quantitative analyses of roles of counter-charges in Toner-charging and Toner-deposition in SCD
 - Requirements for ideal roller coating materials, and characterization method for SCD rollers

Single-Component Development (SCD)

- 1. Development Rolls: Conductive elastomer core Semi-insulator Coating
- 2. Toner Charging at Metering Blade (MB): Charges supplied to toner, Counter-charges to Roll coating
- **3.** Toner deposition:

Charged toners move to PR,

- Counter charges impede toner motion, must be removed (neutralized)
 - to improve deposition efficiency

Single-component Development

- Induction at charging, and
 Neutralization at deposition of Counter Charges
- Charge injection and transport in Semi-insulator Coating layer
- Charge-Transport Model

Non-Ohmic nature

Applied and reported :

Roller charging of PR (NIP21)

Electrostatic toner transfer (NIP16, 20, ICIS'06)

Liquid development (J. App. Phy. 80, 6796)

Counter-charges in SCD (This talk)

Charge Transport Model

- Semi-insulators characterized by 3 parameters
 - 1. Densities of mobile charges, $q_p(y, t)$, $q_n(y, t)$,

Initial (intrinsic) value: $q_i = q_p(y, 0) = -q_n(y, 0)$

2. Charge mobility: μ(E) - field dependent + + + + + +

3. Charge injection strength s

Injection currents from boundary at y

$$J_i = sE(y), E(y) = field at y (= 0 or L)$$

- Continuity eq. $\partial q(y, t)/\partial t = -\partial (\mu q E)/\partial y$
- Poisson's eq. $\partial E(y, t)/\partial y = (q_p + q_n)/\epsilon$
- Results for SCD charging and deposition

V

, S_p, S_n

Toner Charging in SCD (1)

Toner charge density:

 $Q_{T}(t) = [V_{B} - Q_{R}(t)D_{R} - U_{R}(t)]/(D_{T}/2 + D_{R})$ (D = L/ ε = 1/C)

- Q_R(t) = Interface charge density
- $U_R(t) = \int_0^{LR} dy \int_0^{y'} (q_P + q_N) dy' / \varepsilon_R$
- Transport equations, calculate $Q_R(t), U_R(t) \rightarrow Q_T(t)$

} Counter-charges

Toner <u>Charging</u> in SCD (3), y_R

Units

Mobility: μ _o	$\approx 10^{-5} \text{cm}^2/ \text{Vs}$
Time: $t_o = L_R^2 / \mu_o V_B \approx 10^{-2} \text{ sec}$	
Chg density: $q_o = \varepsilon_o V_B / L_R^2$	
*	3x10 ⁻⁶ C/cm ³

in RC

- –V_B Smaller pos mobility μ_p has significant effect (A, B, C)
- Insensitive to neg μ_n (A, D)
- **Build-up of counter-charge** mostly from injection of pos charge from $V_{\rm B}$, not from depletion of neg charge in coating layer

Toner Deposition in SCD (1)

- Fields and Voltages in layers
 - Photoreceptor: E_P , V_P
 - Toner-layer: $E_T(y)$, V_T
 - Roller coating: E_R(y), V_R
- Bias voltage: $-V_B = V_P + V_T + V_R$

- Gauss' theorem relates charges Q_P, Q_R, Q_T to E's
- Field in toner layer:

$$\begin{split} \textbf{E}_{T}(\textbf{y}, \textbf{t}) &= \textbf{E}_{T0} + (\textbf{Q}_{T}/\epsilon)(\textbf{y}/\textbf{L}_{T}) & (\text{detail in Proc. paper}) \\ &= func.[V_{B}, \textbf{Q}_{P}, \textbf{Q}_{T}, \textbf{Q}_{R}(\textbf{t}), \textbf{U}_{R}(\textbf{t}), \textbf{L's}, \epsilon's] \end{split}$$

Injection & transport of Counter-charges in RC contribute to Q_R(t), U_R(t)

Toner **Deposition** in SCD (2)

- Negative toner deposition: E_T(y, t) > 0
- Demarcation line at y = Y_D
 - $E_T > 0$ for $y < Y_D$
 - $E_T < 0$ for $y > Y_D$
- $E_T(Y_D) = E_{T0} + (Q_T/\varepsilon_T)(Y_D/L_T) = 0$
- Deposition efficiency:

$$\mathbf{Y}_{\mathrm{D}}/\mathbf{L}_{\mathrm{T}} = - \varepsilon_{\mathrm{T}} \mathbf{E}_{\mathrm{T0}}/\mathbf{Q}_{\mathrm{T}}$$

= func.[V_B , Q_P , Q_T , $Q_R(t)$, $U_R(t)$, L's, ϵ 's] (in proc. paper)

- Q_R(t), U_R(t) from Transport Eqs.
- Time evolution of Deposition efficiency Y_D/L_T

Toner **Deposition** in SCD (3)

- Deposition efficiency Y_D/L_T vs. time
- Dependence on strength s of injection into RC from V_B

- Significant effects due to small s, in time 10 < t <100
 Time unit:
 - $t_o = L_R^2 / \mu_o V_B ~\approx 10~msec$

Toner **Deposition** in SCD (4)

• Charge mobility (μ_P , μ_N) dependence of Y_D/L_T (Q_T< 0)

- Neg. μ_n reduced (A \rightarrow B \rightarrow C) \rightarrow Significant decrease
- Pos. μ_p reduced (A → D)
 → No effects
- Neutralize Counter-charge requires negative charge injection and transport
 → opposite to polarity required at charging

For efficient charging & deposition, it requires good injection (s) and transport (μ) for both pos and neg charges in SCD roller-coating

- In SCD, Counter Charges in semi-insulator coating Induced at toner Charging, and Neutralized at toner Deposition steps
- Analyses: Charge-Transport model
- Good bi-polar charge injection and transport e.g., for negative toners, Pos. charge inject. & transport for Charging Neg. charge inject. & transport for Deposition
- Process time >≈ 100 t_o (t_o = L_R²/μV_B)
 High speed printing requires high mobility μ (+ and –)
- Dev. Roller performance can't be evaluated properly with closed-circuit resistance measurements

Alternative evaluation method:

Electrostatic Charge Decay (ECD) technique

(NIP-11, 15, 16, 17; ICIS'02; JHC-00, 02, 05)

- Open-circuit voltage decay
 - simulating actual process in Electrophotography
- Field applied by Corona charging
 - Scan and map large area, efficient, non-destructive
- Applied to transfer belts, paper, charge rolls, dev- rolls, PR

Consistently predict device performance

ECD Data for Intermediate Transfer Belt

Rolls and Belts Testing Fixture

Exhibit Booth #210

© 2005 Quality Engineering Associates (QEA), Inc. All Rights Reserved

NIP-22 Denver, September. 2006

Thank you for your attention Please visit Exhibition Booth #210

Inan Chen and Ming-Kai Tse Quality Engineering Associates (QEA), Inc. Burlington, MA, USA www.gea.com